- **P1.** A truss is loaded as shown:
- a. Find reactions at supports
- b. By method of joints solve joints A, C, D and K
- c. By method of sections find JH, FB and FH
- d. Without calculations find zero force members

- a. Reactions.
- b. Forces in DE, DG and GH by method of sections.
- Magnitude and nature of forces in all members by method of joints.

- a. Take load P = load Q = 4 kN to find the axial forces in all the members. Tabulate your results.
- b. If P = 4 kN and Q = 8 kN find by method of sections the forces in members EG, GJ and AB.

P4. For the truss shown.

- a. Identify the members carrying zero force.
- b. Find forces at joints A, C, D and G by method of joints.
- c. Find support reactions.
- d. Find forces in CD, CG, FG, and CF using method of section.

P5. For the truss shown

- a. Identify the zero force member in the truss shown in the figure.
- b. Find the forces in the remaining members of the truss by using method of joints.
- c. Find the forces in the members AE by method of section taking a section, mm.
- d. Using the values of the force found in the members meeting at support F, find the reaction at F.

P6. Referring the truss shown in the figure find:

- a. Reactions
- b. Zero force members
- c. Forces in other members by method of joints
- d. Forces in members FE and DE by method of sections.

Tabulate the results of the analysis.

P7. For the truss shown find

- a. The reactions at A and E
- b. Forces in the members meeting at joint F by method of section
- c. Forces in remaining members by method of joints.
- d. Show the results of analysis in a tabular form.
- **P8.** A pin-joined plane truss is supported and loaded by only one load of 40 kN as shown.
- a. Find members carrying zero forces by the method of inspection giving reasons.
- b. Find the force in the members KC and BH by method of section.
- c. Find the reactions at the supports in magnitude and direction.

P9. For the pin-joined truss loaded as shown, find

- a. All the reactions at A and B
- b. Forces in members EC, ED and DF by method of sections.
- c. Identify all the zero force members giving reasoning for each member.
- d. Axial forces in remaining members by method of joints.

P10. Find forces in members DG and FH by method of sections.

P11. For the truss shown find,

- a. Support reaction
- b. Solve joints F and G by method of joints.
- c. Find AH and AD by method of sections.

ANSWERS

P2. $R_B = 10.33 \text{ kN}; V_A = 8.67; H_A = 0;$ $R_B = 64.16 \text{ kN } \uparrow; V_A = 55.8 \text{ kN } \uparrow;$ P1. $F_{CD} = 9.42 \text{ kN(C)}, F_{DE} = 7.34 \text{ kN (C)};$ $H_A = 20 \text{ kN} \leftarrow$; $F_{CA} = 10 \text{ kN (C)}$; $F_{AC} = 12.56 \text{ kN(C)};$ $F_{CD} = 0$; $F_{AD} = 57.2 \text{ kN (C)}$; $F_{AH} = 8.67 \text{ kN(T)}; F_{CH} = 2.83 \text{ kN (C)};$ $F_{AK} = 54.3 \text{ kN (T)}; F_{DK} = 15.8 \text{ kN (T)};$ $F_{DG} = 0.947 \text{ kN (T)}; F_{DH} = 2 \text{ kN (T)};$ $F_{EK} = 19.8 \text{ kN(C)}; F_{KJ} = 66.2 \text{ kN (T)};$ $F_{HG} = 6.66 \text{ kN(T)}; F_{EG} = 2.32 \text{ kN (T)};$ $F_{HJ} = 66.2 \text{ kN (T)}; F_{EJ} = F_{GB} = 0;$ $F_{EF} = 10.35 \text{ kN(C)}$; $F_{GF} = 4.24 \text{ kN(C)}$ $F_{BF} = 80.2 \text{ kN (C)}$; $F_{BH} = 48.12 \text{ kN(T)}$; $F_{FB} = 14.6 \text{ kN(C)}; F_{GB} = 10.33 \text{ kN(T)}$ $F_{EF} = 28.1 \text{kN}$ (C); $F_{FH} = 24.16 \text{ kN}$ (T); F_{DE} =34.36 kN (C)

P4.

- **P3.a**) $F_{JK} = F_{HE} = 6.66 \text{ kN (T)};$ $F_{EG} = F_{GJ} = 5.33 \text{ kN (T)};$ $F_{EC} = F_{JD} = F_{AC} = F_{BD} = 4 \text{ kN (C)};$ $F_{AD} = F_{AB} = F_{CG} = F_{GD} = 0 ;$ $F_{CD} = F_{DK} = F_{HC} = 5.33 \text{ kN (C)}$ b) $F_{EG} = 5.33 \text{ kN (T)};$ $F_{GJ} = 10.66 \text{ kN (T)}; F_{AB} = 0;$ $V_A = 1.33 \text{ kN ↑}; R_B = 10.66 \text{ kN ↑}$
- $H_A = 84 \text{ kN} \leftarrow ; F_{AC} = 170 \text{ kN} (C);$ $F_{AF} = F_{FG} = 220 \text{ kN} (T);$ $F_{GH} = F_{BH} = 133.3 \text{ kN} (T);$ $F_{EB} = F_{DE} = 166.6 \text{ kN} (C);$ $F_{EG} = 0; F_{EH} = 0; F_{CF} = 30 \text{ kN} (T);$ $F_{CG} = 108.2 \text{ kN} (C);$ $F_{DG} = 125 \text{ kN}(T); F_{CD} = 121.6 \text{ kN}(C)$

 $R_B = 100 \text{ kN } \uparrow; V_A = 102 \text{ kN } \uparrow;$

- P5. $R_F = 150 \text{ kN} \uparrow$; $V_E = 100 \text{ kN} \downarrow$; $H_E = 0$; $F_{AE} = 128 \text{ kN}$ (T); $F_{EF} = 80 \text{ kN}$ (C); $F_{AB} = 80 \text{ kN}$ (T); $F_{AF} = 100 \text{ kN}$ (C); $F_{BF} = 32.12 \text{ kN}$ (C); $F_{FG} = 64.95 \text{ kN}$ (C); $F_{BC} = 60 \text{ kN}$ (T); $F_{BG} = 25 \text{ kN}$ (T); $F_{CG} = 78.1 \text{kN}$ (C); $F_{CD} = F_{CH} = F_{GH} = F_{HD} = 0$
- P6. $R_C = 85 \text{ kN} \uparrow, V_D = 15 \text{ kN} \downarrow, H_D = 0,$ $F_{BF} = F_{CF} = 0; F_{AF} = F_{EF} = 50 \text{ kN} (T);$ $F_{AB} = F_{BC} = 86.6 \text{ kN} (C);$ $F_{EC} = 20 \text{ kN} (C);$ $F_{CD} = 26 \text{ kN} (C); F_{ED} = 30 \text{ kN} (T);$
- **P7.** $H_A = 0$; $V_A = 52.5 \text{ kN} \uparrow$; $R_E = 57.5 \text{ kN} \uparrow$; $F_{AB} = 105 \text{ kN} (C)$; $F_{AG} = 90.9 \text{ kN} (T)$; $F_{BC} = F_{CD} = 55 \text{ kN} (C)$; $F_{BG} = 50 \text{ kN} (C)$; $F_{CG} = 0$; $F_{DG} = 28.86 \text{ kN} (T)$; $F_{GF} = F_{EF} = 33.2 \text{ kN} (T)$; $F_{FD} = 60 \text{ kN} (T)$; $F_{ED} = 66.39 \text{ kN} (C)$
- **P8.** $H_A = 45 \text{ kN} \leftarrow$; $V_A = 60 \text{ kN} \downarrow$; $H_B = 45 \text{ kN} \rightarrow$; $V_B = 100 \text{ kN (T)}\uparrow$; $F_{KC} = 50 \text{ kN (T)}$; $F_{BH} = 100 \text{ kN (C)}$; $F_{MH} = F_{KD} = F_{CD} = 0$
- **P9.** $H_A = 0$; $V_A = 120 \text{ kN } \downarrow$; $R_B = 160 \text{ kN } \uparrow$; $F_{EC} = 169.7 \text{ kN } (T)$; $F_{ED} = F_{BD} = 160 \text{ kN } (C)$; $F_{CD} = F_{DF} = 120 \text{ kN } (C)$; $F_{CA} = 120 \text{ kN } (T)$; $F_{FH} = F_{JH} = 40 \text{ kN } (C)$; $F_{JI} = F_{FI} = 56.7 \text{ kN } (T)$; $F_{EG} = F_{GI} = 80 \text{ kN } (T)$; $F_{AB} = F_{BC} = F_{GF} = F_{HI} = 0$; $F_{IF} = 56.7 \text{ kN } (C)$
- **P10.** $F_{DG} = 0$, $F_{FH} = 100 \text{ kN (C)}$
- **P11.**a) $H_A = 29.61 \text{ kN} \leftarrow$, $V_A = 40 \text{ kN} \uparrow$, $R_C = 29.61 \text{ kN} \rightarrow$; b) $F_{EF} = 37.96 \text{ kN}$ (C); $F_{GF} = F_{HG} = 35.55 \text{ kN}$ (T); $F_{EG} = 0$; c) $F_{AH} = 35.47 \text{ kN}$ (T); $F_{AD} = 7.33 \text{ kN}$ (C)
- **P12.** $H_A = 400 \text{ N} \leftarrow$; $V_A = 300 \text{ N} \uparrow$; $R_C = 500 \text{ N} \uparrow$; BD = DC = EF = 0; AE = EC = 1000 N (T); BC = 1118 N (C); AB = 670.8 N (C)